Home
Class 12
MATHS
5*C(0)+8*C(1)+11*C(2)+........" to "(n+1...

5*C_(0)+8*C_(1)+11*C_(2)+........" to "(n+1)" terms "=

Promotional Banner

Similar Questions

Explore conceptually related problems

5C_(0)+8.C_(1)+11.C_(2)+.... to (n+1) terms =

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : 3.^(n)C_(0)-8.^(n)C_(1)+13.^(n)C_(2)-18.^(n)C_(3)+....."up to"(n+1)"terms" =0

If n is positive integer greater than 1, then 3 (""^(n) C_(0)) -8(""^(n) C_(1)) + 13 (""^(n)C_(2)) +… upto (n+1) terms =

The value of C_(0)^(2)+3.C_(1)^(2)+5.C_(2)^(2)+..... to (n+1) terms where C_(r)=^(n)C_(r ) is

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+C_(n)x^(n) prove that 3C_(0)-8C_(1)+13C_(2)-18C_(3)+...up rarr(n+1)terms=0

The value of C_(0)^(2)+3.C_(1)^(2)+5.C_(2)^(2)+......(n+1) terms where C_(r)=^(n)C_(r) is

The value of C_(0)^(2)+3.C_(1)^(2)+5.C_(2)^(2)+.....to(n+1) terms where C_(r)=^(n)C_(r) is

The value of C_(0)^(2)+3.C_(1)^(2)+5.C_(2)^(2)+.....to(n+1) terms where C_(r)=^(n)C_(r) is

The value of C_(0)^(2)+3.C_(1)^(2)+5.C_(2)^(2)+.....to(n+1) terms where C_(r)=^(n)C_(r) is

lf C_(r)=""^(n)C_(r) , then C_(0)-1/3C_(1)+1/5C_(2) …… upto (n+1) terms equal