Home
Class 12
MATHS
It sum of the ordinate and the abscissa ...

It sum of the ordinate and the abscissa of a point `P(x, y)` is `2n(x, y` are natural numbers), then the probability that P does not lie on the line `y = x` is: (A) `(n-1)/(n+3)` (B) `(.^(2n)C_n)/2^(2n)` (C) `(2n-2)/(2n-1)` (D) `(2n+1)/(2n+3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(x^(2^n)-y^(2^n))/(x^(2^(n-1))+y^(2^(n-1)))=

(x^(2^(n-1))+y^(2^(n-1)))(x^(2^(n-1))-y^(2^(n-1)))=

If y=ax^(n+1)+bx^(-n), then x^(2)(d^(2)y)/(dx^(2))=n(n-1)y(b)n(n+1)y(c)ny(d)n^(2)y

If tan x=n tan y,n in R^(+), then the maximum value of sec^(2)(x-y) is equal to (a) ((n+1)^(2))/(2n) (b) ((n+1)^(2))/(n)( c) ((n+1)^(2))/(2) (d) ((n+1)^(2))/(4n)

The number of distinct terms in the expansion of is (x^(3)+(1)/(x^(3))+1)^(n) is (a) 2n (b) 3n (c) 2n+1 (d) 3n+1

Find n, if ""^(2n)C_(1),""^(2n)C_(2) and ""^(2n)C_(3) are in A.P.

If y=a x^(n+1)+b x^(-n) , then x^2(d^2y)/(dx^2)= n(n-1)y (b) n(n+1)y (c) n y (d) n^2y

If y=x^(2)e^(x) ,show that y_(n)=(1)/(2)n(n-1)y_(2)-n(n-2)y_(1)+(1)/(2)(n-1)(n-2)}

If y=ax^(n+1)+bx^(-n), then x^(2)(d^(2)y)/(dx^(2)) is equal to n(n-1)y(b)n(n+1)yny(d)n^(2)y

The middle term in the expansion of ((2x)/(3)-(3)/(2x^(2)))^(2n) is ^(2n)C_(n) b.(-1)^(n)2nC_(n)x^(-n) c.^(2n)C_(n)x^(-n)d .none of these