Home
Class 12
MATHS
" (i) "sec^(-1)((x^(2)+1)/(x^(2)-1))...

" (i) "sec^(-1)((x^(2)+1)/(x^(2)-1))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) in the following: y= sec^(-1) ((x^(2) + 1)/(x^(2)-1))

If y = sec^(-1) ((x^(2) + 1)/(x^(2) -1)) " then " (dy)/(dx) = ?

sec^(-1)((1+x^(2))/(1-x^(2)))

If y=sec^(-1)((x^(2)+1)/(x^(2)-1)) , then find (dy)/(dx) . Here f^(-1)(x) expression is of the form (x^(2)+a^(2))/(x^(2)-a^(2)) , so we substitute x=tan theta and then use suitable trigonometrical formula to write it in simplest form and then differentiate

Differentiate sec^(-1) ((x^2 + 1)/(x^2 -1))

If y=sin^(-1)((2x)/(1+x^(2)))+sec^(-1)((1+x^(2))/(1-x^(2))),0