Home
Class 11
PHYSICS
The angular velocity of a rotating body ...

The angular velocity of a rotating body is `vec omega = 4 hat i + hat j - 2 hat k`. The linear velocity of the body whose position vector `2hati + 3 hat j - 3 hat k` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The angular velocity of a body is vec (omega)- = 2 hat(i) + 3 hat(j) + 4 hat (k) and torque hat(tau) = hat(i) + 2 hat(j) + 3 hat(k) acts on it. The rotational power will be

The angular velocity of a particle, vec(w) = 3 hat(i) - 4 hat(j) + hat(k) and its position vector, vec( r) = 5 hat(i) - 6 hat(j) + 6 hat(k) . What is the linear velocity of the particle?

Work done by a force F on a body is W = F .s, where s is the displacement of body. Given that under a force F = (2 hat i +3 hat j +4 hat k) N a body is displaced from position vector r_1 = (2 hat i +3 hat j + hat k) m to the position vector r_2 = (hat i +hat j+ hat k) m. Find the work done by this force.

The linear velocity of a rotating body is given by vec(v)= vec(omega)xxvec(r ) , where vec(omega) is the angular velocity and vec(r ) is the radius vector. The angular velocity of a body is vec(omega)= hat(i)-2hat(j)+2hat(k) and the radius vector vec(r )= 4hat(j)-3hat(k) , then |vec(v)| is

The linear velocity of a rotating body is given by vec(v)= vec(omega)xxvec(r ) , where vec(omega) is the angular velocity and vec(r ) is the radius vector. The angular velocity of a body is vec(omega)= hat(i)-2hat(j)+2hat(k) and the radius vector vec(r )= 4hat(j)-3hat(k) , then |vec(v)| is

Work done by a force F on a body is W = F .s, where s is the displacement of body. Given that under a force F = (2 hat I +3 hat j +4 hat k) N a body is displaced from position vector r_1 = (2 hat I +3 hat j + hat k) m to the position vector r_2 = (hat i +hat j+ hat k) m. Find the work done by this force.

Work done by a force F on a body is W = F .s, where s is the displacement of body. Given that under a force F = (2 hat I +3 hat j +4 hat k) N a body is displaced from position vector r_1 = (2 hat I +3 hat j + hat k) m to the position vector r_2 = (hat i +hat j+ hat k) m. Find the work done by this force.

The linear velocity of a rotating body is given by vec(v)=vec(omega)xxvec(r) , where vec(omega) is the angular velocity and vec(r) is the radius vector. The angular velocity of a body is vec(omega)=hat(i)-2hat(j)+2hat(k) and the radius vector vec(r)=4hat(j)-3hat(k) , then |vec(v)| is-

The linear velocity of a rotating body is given by vec(v)=vec(omega)xxvec(r) , where vec(omega) is the angular velocity and vec(r) is the radius vector. The angular velocity of a body is vec(omega)=hat(i)-2hat(j)+2hat(k) and the radius vector vec(r)=4hat(j)-3hat(k) , then |vec(v)| is-