Home
Class 12
MATHS
If x=2+3i and y=2-3i then find the value...

If x=2+3i and y=2-3i then find the values of `(x^(3)-y^(3))/(x^(3)+y^(3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=2+3i and y=2-3i then find the values of : (x^(2)+xy+y^(2))/(x^(2)-xy+y^(2))

If x^(2)+y^(2)=49 and x-y=3, then find the value of x^(3)-y^(3)

Find the value of (2x+3y)+(3x+y).

If x=3 and y=4 , find the value of 3x+2y

If x =3 and y=1, then find the values of (i) 3x-2y" "(ii) (22)/(3)x^(2)-(7)/(2)y^(2)

If ((2x-y)/(x+2y))=(1)/(2), then find the value of ((3x-y)/(3x+y))

If x = 1, y = - 2 and z = 3. find the value of (i) x^(3) + y^(3) + z^3-3xyz (ii) 3xy^(4) - 15 x^(2) y + 4z

If A=[(x,y,z),(y,z,x),(z,x,y)] and A^3=I_3 and xyz=2 and x+y+z gt 0 find the value of x^3+y^3+z^3 is

If 4x+i(3x-y)(3x-y)=3+i(-6) then find the value of x and y.

If (x_(i),y_(i)),i=1,2,3, are the vertices of an equilateral triangle such that (x_(1)+2)^(2)+(y_(1)-3)^(2)=(x_(2)+2)^(2)+(y_(2)-3)^(2)=(x_(3)+2)^(2)+(y_(3)-3)^(2) then find the value of (x_(1)+x_(2)+x_(3))/(y_(1)+y_(2)+y_(3))