Home
Class 12
MATHS
I=int(0)^(oo)x^(n)e^(-x)dx...

I=int_(0)^(oo)x^(n)e^(-x)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(oo)x^(n)e^(-x)dx(n is a +ve integer) is equal to

Let m,n be two positive real numbers and define f(n)=int_(0)^(oo)x^(n-1)e^(-x)dx and g(m,n)=int_(0)^(1)x^(m-1)(1-m)^(n-1)dx . It is known that f(n) for n gt 0 is finite and g(m, n) = g(n, m) for m, n gt 0. int_(0)^(oo)(x^(m-1))/((1+x)^(m+n))dx=

underset is If int_(0)^(oo)e^(-ax)dx=(1)/(a), then int_(0)^(oo)(x^(n))e^(-ax)dx

D) int_(0)^(oo)x^(5)e^(-x)dx

If I_(n)=int_(0)^(1)x^(n)e^(-x)dx for n in N, then I_(7)-I_(6)=

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=

Prove that: I_(n)=int_(0)^(oo)x^(2n+1)e^(-x^(2))dx=(n!)/(2),n in N