Home
Class 12
MATHS
int8^2010(cos^2018x)/(cos^2018x+cos(2018...

`int_8^2010(cos^2018x)/(cos^2018x+cos(2018-x)^2018)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(8)^(2010)(cos^(2018)x)/(cos^(2018)x+cos(2018-x)^(2018))dx

The value of the integral int_(-2018)^(2018)(f'(x)+f'(-x))/(2018^(x)+1)dx is equal to

Consider the graph of y=f(|x|) Then the value of definite integral int_(1)^(2)((f(x))^(2018))/(1+(f(x))^(2018)+(f(x))^(2020))dx is

If the value int(1-(cot x)^(2018))/(tan x+(cot x)^(2019))dx=(1)/(k_(1))log_(e)|sin^(k_(2))x+cos^(k_(3))x|+C then which of the following is/are TRUE' A) Sum of the digits in k_(1) is 4 B) k_(2)=2018 C) k_(3)=k_(1) D) k_(1)gtk_(2)

[(2^(2020)+1)/(2^(2018)+1)] + [(3^(2020)+1)/(3^(2018)+1)] + [(4^(2020)+1)/(4^(2018)+1)] + [(5^(2020)+1)/(5^(2018)+1)] + [(6^(2020)+1)/(6^(2018)+1)]

int_(0)^(pi//2)(dx)/(1+(tanx)^(sqrt(2018)))=

If f(x)=(cos^(2)x +sin^(4)x)/(sin^(2)x +cos^(4)x) for x in R then f(2018)=

int_(0)^((pi)/2)(dx)/(1+(tanx)^(sqrt(2018)))=