Home
Class 12
MATHS
(dy)/(dx) निकालें जब x = a(1 -c osthet...

`(dy)/(dx)` निकालें जब
`x = a(1 -c ostheta ), y = a(theta + sintheta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find dy/dx when x = a(1 + costheta) , y= a(theta-sintheta)

Find dy/dx if, x=a(1- cos theta), y=b(theta - sintheta)

Find dy/dx , when: x=a(1-costheta),y=a(theta+sintheta)

Find (d^2y)/(dx^2) : x = a(theta - sintheta), y = a(1 - costheta) at theta = (pi)/2 .

Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(1-costheta),y=a(theta+sintheta)

Find (dy)/(dx) when : x=a(1+costheta),y=a(theta+sintheta) .

Find (dy)/(dx), when x=a e^(theta)(sintheta-costheta),y=a e^(theta)(sintheta+costheta)

Find dy/dx if x = a(theta +sintheta), y = a(1-cos theta)

Find (dy)/(dx) , if x=costheta-cos2theta , y=sintheta-sin2theta

Find (dy)/(dx) from the following :- x = a (theta + sintheta), y = a(theta - costheta) .