Home
Class 12
MATHS
Consider a matrix A=[[1,1,1],[0,0,1],[2,...

Consider a matrix `A=[[1,1,1],[0,0,1],[2,3,4]]`. The value of determinant of `(A^(-1)-(A^(-1))^(2))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the matrix A= [[1,3/4,0],[3/4,1,3/4],[0,3/4,1]] find the magnitude

Find the rank of the matrix [[1,4,-1],[2,3,0],[0,1,2]]

In the matrix [[1,0,5],[2,-3,4]] order of matrix matrix is………

Consider two matrices B=[[1,0],[0,-1]] and C=[[0,1],[-1,0]]. If matrix A=sum_(n=1)^(100)(B^(n)+C^(n)) ,then find the absolute value of determinant of matrix A.

If A=[[1,0,0],[0,1,0],[0,0,1]] then value of |A+A'| is 1)2 2)8 3)4 4)0

The inverse of the matrix [[1, 0, 1], [0, 2, 3], [1, 2, 1]] is

(b) Find the rank of the matrix [[1,-1,2,-1],[4,2,-1,2],[3,2,-2,0]]

If the adjoint of a 3 xx 3 matrix P is [{:(,1,4,4),(,2,1,7),(,1,1,3):}] , then the possible value(s) of the determinant of P is (are)