Home
Class 12
MATHS
cos^(-1) (63/65) + 2tan^(-1) (1/5)= sin^...

`cos^(-1) (63/65) + 2tan^(-1) (1/5)= sin^(1)` (_______).

Promotional Banner

Similar Questions

Explore conceptually related problems

sin[cos^(-1)(3/5)+tan^(-1)2]=

cos[2(tan^(-1).(1)/(5)+tan^(-1)5)] = ________.

Evaluate following 1. sin(cos^(-1) 3//5) 2. cos(tan^(-1)3//4) 3. sin(pi/2-sin^(-1) (-1/2))

3tan ^ (- 1) ((1) / (2)) + 2tan ^ (- 1) ((1) / (5)) + sin ^ (- 1) ((142) / (65sqrt (5)))

Prove that cos^(-1)(3/5) + cos^(-1) (12/13) + cos^(-1)( 63/65) =pi/2 .

The value of 3 "tan"^(-1)(1)/(2) + 2 "tan"^(-1)(1)/(5) + "sin"^(-1)(142)/(65sqrt(5)) is :

cos[2cos^(-1).(1)/(5)+sin^(-1).(1)/(5)] =

Prove that cot^(-1).(3)/(4) + sin^(-1).(5)/(13) = sin^(-1).(63)/(65)

tan^(-1)(1/3)+tan^(-1)(1/5)=(1)/(2)cos^(-1)(33/65)

Prove that sin^(-1). 3/5 +cos^(-1) . 12/13 = sin^(-1). 56/65