Home
Class 12
MATHS
If Rolle's theorem holds for the functio...

If Rolle's theorem holds for the function `f(x)=2x^(3)+bx^(2)+cx` On the interval `[-1,1]` at the point `K=(1)/(2)` then the value of `9b-(c)/(47)=`............

Promotional Banner

Similar Questions

Explore conceptually related problems

If Rolle's theorem holds for the function f(x) = 2x^(3) + ax^(2) + bx in the interval [-1,1] for the point c= (1)/(2) , then the value of 2a +b is

If the Rolle's theorem holds for the function f(x) = 2x^(3)+ax^(2)+bx in the interval [-1,1]for the point c= 1/2 ,then the value of 2a+b is :

Verify Rolle's theorem for the function f(x)=x^(3)-3x^(2)+2x in the interval [0,2] .

Verify Rolle's theorem for the function f(x) = x^(3) -6x^(2) + 11x-6 in interval [1,3]

Verify Rolle's theorem for the function f(x) = x^(2) +x-6 in the interval [-3,2]

Verify Rolls theorem for the function f(x)=x^(3)-6x^(2)+11x-6 on the interval [1,3].

If Rolle's theorem holds for the function f(x) =x^(3) + bx^(2) +ax -6 for x in [1,3] , then a+4b=

Verify the Rolle's theorem for the function f(x) = x^(2) - 3x+2 on the interval [1,2].

If Rolle's theoram holds for the function f(x) 2x^(3)+bx^(2)+cx , xepsilon[-1,1],"at the point x" = 1/2 ,then 2b + c equals :

Verify Rolle's theorem for the function f(x) = x^(3) - 9x^(2) + 26x -24 in the interval [2.4]