Home
Class 12
MATHS
Let f,g, h be 3 functions such that f(x)...

Let f,g, h be `3` functions such that `f(x)gt0` and `g(x)gt0, AA x in R` where `int f(x)*g(x)dx=(x^(4))/(4)+C` and `int(f(x))/(g(x))dx=int(g(x))/(h(x))dx=ln|x|+C`. On the basis of above information answer the following questions: `int f(x)*g(x)*h(x)dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int{f(x)g'(x)-f'g(x)}dx equals

The value of int[f(x)g'(x)-f'(x)g(x)]dx is equal to

If f(x)=x, g(x)=sinx, then int f(g(x))dx is equal to

if int g(x)dx=g(x), then int g(x){f(x)+f'(x)}dx is equal to

If (d)/(dx)f(x)=g(x), then int f(x)g(x)dx is equal to:

If int_(0)^(a)(g(x))/(f(x)+f(a-x))dx=0 , then

Prove that int_0^t f(x)g(t-x)dx=int_0^t g(x)f(t-x)dx

Given int_(0)^(g(x))f(t)dt=h(x)+C, where g(x) is a polynomial and C is arbitrary constant, then On the basis of above information, answer the following questions: If g(x)=x, f(t)=((t-|t|)^(2))/(1+t^(2)), then h(x) will be equal to

If int g(x)dx=f(x) , then : intf(x).g(x)dx=