Home
Class 12
MATHS
If the system of equation x+ky+3z=0,3x+k...

If the system of equation `x+ky+3z=0,3x+ky-2z=0,2x+3y-4z=0` has non trivial solution, then `(xy)/(z^2) =`

Promotional Banner

Similar Questions

Explore conceptually related problems

The system of equations: x+ky+3z=0 , 3x+ky-2z=0 , 2x+3y-4z=0 has non- trivial solution. when k=

If the system of equations x+y+2z=0,2x-3y+z=0,x-5y+4z=lambda has a non trival solution then

If the system of equations x+y+z=0 ax+by+z=0 bx+y+z=0 has a non trivial solution then

If the system of equations x-ky+3z=0, 2x+ky-2z=0 and 3x-4y+2z=0 has non - trivial solutions, then the value of (10y)/(x) is equal to

Let the system of linear equations 2x+3y-z=0,2x+ky-3z=0 and 2x-y+z=0 have non trivial solution then (x)/(y)+(y)/(z)+(z)/(x)+k will be

If the system of linear equations x+ky+3z=03x+ky-2z=02x+4y-3z=0 has a non-zero solution (x,y,z) then (xz)/(y^(2)) is equal to

STATEMENT-1 : The system of equations x + ky + 3z =0, 3x + ky - 2z =0, 2x+3y-z=0, possesses a non-trival solution. then value of k is 31/2 STATEMENT -2 Three linear equations in x, y, z can never have no solution if it is homogeneous, hence exactly two types of possible solution.

If system of equation 4x-lambday+2z=0 , 2x+2y+z=0 , mux+2y+3z=0 has non trivial solution than