Home
Class 12
MATHS
If int(x+1)/((x^(2)+4x+5)^(2))dx=f(x)+g(...

If `int(x+1)/((x^(2)+4x+5)^(2))dx=f(x)+g(x)+c` where f(0)=`(-3)/(10)`, g(-1)=`(-pi)/(8)` and c is any arbitrary constant, if value of `f(1)+g(sqrt(3)-2)=-(1)/(5)-(pi)/(k)`, then k:

Promotional Banner

Similar Questions

Explore conceptually related problems

If int(5x^(4)+4x^(5))/((x^(5)+x+1)^(2))dx=f(x)+C , then the value of (1)/(f(1)) is

Let int(x^(2)-1)/(x^(3)sqrt(3x^(4)+2x^(2)-1))dx=f(x)+c where f(1)=-1 and c is the constant of integration.

If int(x-1)/(x^(2)sqrt(2x^(2)-2x-1))dx=(sqrt(f(x)))/(g(x))+c then the value of f(x) and g(x) is

If int1/((1+x)sqrt(x))dx=f(x)+A , where A is any arbitrary constant, then the function f(x) is

int_( Let )^( Let )e^(3x)tan^(-1)e^(x)dx=e^(3x)f(x)+(1)/(6)g(x)+C such that f(0)=(pi)/(12),g(0)=In((2)/(e)) and C is constant of integration,then

If int(sqrt(1+root(3)(x)))/(x^(2/3))dx=K(f(x))^(n/k)+C then

Let int(x^((1)/(2)))/(sqrt(1-x^(3)))dx=(2)/(3)g(f(x))+c then

Let int(dx)/(sqrt(x^(2)+1)-x)=f(x)+C such that f(0)=0 and C is the constant of integration, then the value of f(1) is