Home
Class 11
MATHS
Prove that :sec^(6)x-tan^(6)x-3sec^(2)x"...

Prove that `:sec^(6)x-tan^(6)x-3sec^(2)x" ."tan^(2)x=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

int sec^(2)x-tan^(2)x

Prove that : 2sec^(2)x-sec^(4)x-2cos ec^(2)x+cos ec^(4)x=(1-tan^(8)x)/(tan^(4)x)

Prove that (1)/(sin^(6)x+cos^(6)x)=(sec^(2)x+cos ec^(2)x)/((tan x-cot x)^(2)+1)

Prove that (1)/(sin^(6)x+cos^(6)x)=(sec^(2)x+cos ec^(2)x)/((tan x-cot x)^(2)+1)

int(tan^(2)x sec^(2)x)/(1+tan^(6)x)dx

Prove :sec^(6)theta=tan^(6)theta+3tan^(2)theta sec^(2)theta+1

Prove that tan^(-1) x =sec^(-1) sqrt(1+x^2)

Evaluate: int sec^(6)x tan xdx

Prove that (1)/(sec x-tan x)+(1)/(sec x+tan x)=(2)/(cos x)

Prove that: (i) tan 8x-tan6x-tan2x=tan8x tan6x tan2x