Home
Class 12
MATHS
Prove that cos^(3)thetasin3theta+sin^(3)...

Prove that `cos^(3)thetasin3theta+sin^(3)theta cos 3theta=(3)/(4)sin 4 theta`.

Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(3)theta*sin3 theta+sin^(3)theta*cos3 theta=(3)/(4)sin4 theta

cos^(3)theta sin 3theta + sin^(3)theta cos3theta=3/4

prove : cos^3 thetasin3theta+sin^3thetacos3theta=3/4 sin4theta

Prove that: sin theta cos^(3)theta-cos theta sin^(3)theta=(1)/(4)sin4 theta

Prove that sin theta cos^(3)theta - cos theta sin^(3) theta = (1)/(4) sin 4 theta .

Prove the following identity: cos^3thetasin3theta+sin^3thetacos3theta=3/4sin4thetadot

Prove that, cos^(3) theta cos 3 theta + sin^(3) theta sin 3 theta = cos^(3) 2 theta

sin theta cos ^ (3) theta-cos theta sin ^ (3) theta = (1) / (4) sin4 theta

Prove that ( cos theta + cos 2 theta + cos 3 theta + cos 4 theta)/(sin theta + sin 2 theta + sin 3 theta + sin 4 theta)= cot ""(5theta)/(2).

4 sin theta * cos^(3) theta-4 cos theta * sin ^(3)theta= A) 4 cos theta B) cos 4 theta C) 4 sin theta D) sin 4 theta