Home
Class 12
MATHS
If 2^(x)=3^(y)=12^(z) show that xy=z(x+...

If `2^(x)=3^(y)=12^(z)` show that xy=z(x+2y)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2^(x)=3^(y)=12^(z) show that (1)/(z)=(1)/(y)+(2)/(x)

If 3^(x)=5^(y)=(75)^(z) show that z=(xy)/(2x+y)

If 2^(x)=3^(y)=12^(z) , then what is (x+2y)//(xy) equal to ?

If 2^x = 3^y =12^z show that 1/z= 1/y+2/x

If 3^x=5^y=(75)^z show that z=(xy)/(2x+y

If 1/2[(x-y)^2+(y-z)^2+(z-x)^2]=0 show that X^2+y^2+z^2-xy-yz-zx=0

If x+y+z=,0, show that x,y,zx^(2),y^(2),z^(2)y+z,z+x,x+y]|=0

If (x+y+z)(y+z-x)(z+x-y)(x+y-z) prop x^2y^2 then show that either x^2+y^2= z^2 or x^2+y^2-z^2 prop xy .

If z=x+iy and |z-1|+|z+1|=4 show that 3x^(2)+4y^(2)=12