Home
Class 14
MATHS
" (ii) "lim(x rarr0)([x])/(x)," where "[...

" (ii) "lim_(x rarr0)([x])/(x)," where "[x]" denotes the greatest integer "<=x" ."

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(|x|)/(x)

The lim it lim_(x rarr0)(sin[x])/(x), where [x] denotes greatest integer less than or equal to x, is equal to

lim_(x rarr0)(cotx)^(x)

Given lim_(x rarr0)(f(x))/(x^(2))=2, where [.] denotes the greatest integer function,then lim_(x rarr0)[f(x)]=0lim_(x rarr0)[f(x)]=1lim_(x rarr0)[(f(x))/(x)] does not exist lim _(x rarr0)[(f(x))/(x)] exists

If p= lim_(x rarr0^(+))[(3sin x)/(x)] ,q= lim_(x rarr0^(+))[(3x)/(sin x)] ,r= lim_(x rarr0^(+))[(tan x)/(x)] and s=lim_(x rarr0^(+))[(3tan x)/(x)] where [.] denotes the greatest integer function (A) pqrs=18 (B) pqrs=0 (C) p+q+r+s=9 (D) pq+rs+qr+sp=18

lim_(x rarr0)[sin x]

lim_(x rarr0)(x[x])/(sin|x|) , where [.] denote greater integer function

Evaluate: lim_(x rarr0)(sin x)/(x), where [.] represents the greatest integer function.

The value of the lim_(x rarr0)(x)/(a)[(b)/(x)](a!=0)(where[*] denotes the greatest integer function) is