Home
Class 12
MATHS
int(sin^2x)/(cos^4x)\ dx= 1/3tan^2x+C (...

`int(sin^2x)/(cos^4x)\ dx=` `1/3tan^2x+C` (b) `1/2tan^2x+C` (c) `1/3tan^3x+C` (d) none

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int(sin^2x)/(cos^4x)\ dx= (a) 1/3tan^2x+C (b) 1/2tan^2x+C (c) 1/3tan^3x+C (d) none

int(sin^(2)x)/(cos^(4)x)dx=(1)/(3)tan^(2)x+C(b)(1)/(2)tan^(2)x+C(c)(1)/(3)tan^(3)x+C(d) none

int(sin^(2)x)/(1+cos2x)dx=k (tan x-x)+c then k is equal to

int(1)/(1+3cos^(2)x)dx=(1)/(2)tan^(-1)((tan x)/(2))+c

int(sinx)/(3+4cos^2x)\ dx a. log(3+4cos^2x)+C (b) 1/(2sqrt(3))tan^(-1)((cosx)/(sqrt(3)))+C (c) -1/(2sqrt(3))tan^(-1)((2"\ cos"x)/(sqrt(3)))+C (d) 1/(2sqrt(3))tan^(-1)((2"\ cos"x)/(sqrt(3)))+C

int(cos2x-1)/(cos2x+1)dx=tan x-x+C(b)x+tan x+C(c)x-tan x+C(d)x-cot x+C

If int(sin2x)/(sin^(4)x+cos^(4)x)dx=tan^(-1)[f(x)]+c , then f(pi/3)=

If int(sin2x)/(sin^(4)x+cos^(4)x)dx=tan^(-1)[f(x)]+c , then f(pi/3)=

int(sin x)/(3+4cos^(2)x)dx log(3+4cos^(2)x)+C(b)(1)/(2sqrt(3))tan^(-1)((cos x)/(sqrt(3)))+C(c)-(1)/(2sqrt(3))tan^(-1)((2backslash cos x)/(sqrt(3)))+C(d)(1)/(2sqrt(3))tan^(-1)((2backslash cos x)/(sqrt(3)))+C