Home
Class 11
MATHS
" The sides of triangle be "a,b,c" are r...

" The sides of triangle be "a,b,c" are roots of "x^(3)-11x^(2)+38x-40=0" then "sum(cos A)/(a)=?

Promotional Banner

Similar Questions

Explore conceptually related problems

If in a triangle ABC a,b,are roots of the equation x^(3)-11x^(2)+38x-40=0 then sum(cos A)/(a) equal to:

In DeltaABC , if the sides a,b,c are the roots of x^(3)-11x^(2)+38x-40=0 then the value of (cosA)/(a)+(cosB)/(b)+(cosC)/(c)=

In a DeltaABC , if the sides a, b, c are the roots of the equation x^(3)-11x^(2)+38x-40=0 , then (cosA)/a+(cosB)/b+(cosC)/c=

In a Delta ABC, the side a, b, and c are such that they are roots of x^(3) -11x ^(2) +38x -40=0. Then the value of (cos A)/(a )+ (cos B)/(b)+ (cos C)/(c ).

In a triangle ABC, if the sides a,b,c, are roots of x^3-11 x^2+38 x-40=0, then find the value of (cosA)/a+(cosB)/b+(cosC)/c

In a triangle ABC, if the sides a,b,c, are roots of x^3-11 x^2+38 x-40=0, then find the value of (cosA)/a+(cosB)/b+(cosC)/c

In a triangle ABC, if the sides a,b,c, are roots of x^3-11 x^2+38 x-40=0, then find the value of (cosA)/a+(cosB)/b+(cosC)/c

In a triangle ABC, if the sides a,b,c, are roots of x^3-11 x^2+38 x-40=0, then find the value of (cosA)/a+(cosB)/b+(cosC)/c

In a triangle ABC, if the sides a,b,c, are roots of x^3-11 x^2+38 x-40=0, then find the value of (cosA)/a+(cosB)/b+(cosC)/c