Home
Class 12
MATHS
if y=x^2+1/(x^2+1/(x^2+..............)) ...

if `y=x^2+1/(x^2+1/(x^2+..............))` then prove that `(dy)/(dx)=(2xy^2)/(1+y^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

y =x^2+(1)/(x^2 +(1)/(x^2+.....oo)) then prove that xdy/dx =(2xy^2)/(1+y^2).

y =x^2+(1)/(x^2 +(1)/(x^2+.....oo)) then prove that xdy/dx =(2xy^2)/(1+y^2).

dy/dx=(2xy)/(x^2-1-2y)

(dy)/(dx) = (2xy)/(x^(2)-1-2y)

(dy)/(dx) = (2xy)/(x^(2)-1-2y)

(dy)/(dx) = (2xy)/(x^(2)-1-2y)

if y=tan^(-1)((2x)/(1-x^(2))) then prove that (dy)/(dx)=(2)/(1+x^(2))

If y= "tan"^(-1) (2x)/(1-x^(2)) , prove that (dy)/(dx)= (2)/(1 + x^(2))

If y=tan^(-1)(sqrt(1+x^(2))-x) then,prove that (dy)/(dx)=-(1)/(2(x^(2)+1))

xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))