Home
Class 8
MATHS
[7*],[" If "x=r sin theta cos phi,y=r si...

[7*],[" If "x=r sin theta cos phi,y=r sin theta sin phi," and "z=r cos theta," then "x^(2)+y^(2)+z^(2)" is "],[" independent of "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=r cos theta cos phi , y=r cos theta sin phi and z=r sin theta , then x^(2)+y^(2)+z^(2)=

If x=r sin theta cos phi, y= r sin theta sin phi, z=r cos theta , prove that x^2+y^2+z^2=r^2 .

If x=r sin theta cos phi,y=r sin theta sin phi and z=r cos theta,thenx^(2)+y^(2)+ is independent of theta,phi(b)r,theta(c)r,phi(d)r

If x= r sin theta cos phi , y=rsin theta sin phi and z=r costheta then the value of sqrt(x^2+y^2+z^2) will be

If x=r cos theta cos phi, y=r cos theta sin phi, z=r sin theta , then prove that x^(2)+y^(2)+z^(2)=r^(2).

If x = rsin theta*cos phi , y = rsin theta*sin phi and z = rcos theta then prove that x^2 + y^2 + z^2 = r^2

If x = r cos theta sin phi, y = r sin theta sin phi , and z= r cos phi , prove that x^(2)+y^(2) + z^(2)=r^(2) .

If x=rsinthetacosphi,y=rsinthetasinphi and z=rcostheta, then x^2+y^2+z^2 is independent of (a)theta,phi (b) r ,theta (c) r ,phi (d) r

If x=rsinthetacosphi,y=rsinthetasinphi and z=rcostheta, then x^2+y^2+z^2 is independent of (a)theta,phi (b) r ,theta (c) r ,phi (d) r

If cos theta+cos phi=a and sin theta - sin phi=b , then: 2cos(theta + phi) =