Home
Class 11
MATHS
((1+i)/(sqrt(2)))^(8)+((1-i)/(sqrt(2)))^...

((1+i)/(sqrt(2)))^(8)+((1-i)/(sqrt(2)))^(8)=2

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of ((1+i)/(sqrt(2)))^(8)+((1-i)/(sqrt(2)))^(8)=

If n in N((1+i)/(sqrt(2)))^(8n)+((1-i)/(sqrt(2)))^(8)n is

n in N,((1+i)/(sqrt(2)))^(8n)+((1-i)/(sqrt(2)))^(8n)=

((1+i)/(sqrt(2)))^(8)+((1-i)/(sqrt(2)))^(8) is equal to

n in N((1+i)/(sqrt(2)))^(8n)+((1-i)/(sqrt(2)))^(8n)=

((1+i)/(sqrt(2)))^8+((1-i)/(sqrt(2)))^8 is equal to

Show that ((1 + i ) /( sqrt2 )) ^( 8) + ((1 - i )/( sqrt2 )) ^( 8) = 2.

Prove that : (i) sqrt(i)= (1+i)/(sqrt(2)) (ii) sqrt(-i)=(1- i)/(sqrt(2)) (iii) sqrt(i)+sqrt(-i)=sqrt(2)

Prove that : (i) sqrt(i)= (1+i)/(sqrt(2)) (ii) sqrt(-i)=(1- i)/(sqrt(2)) (iii) sqrt(i)+sqrt(-i)=sqrt(2)

Simplify: (i)\ ((sqrt(2))/5)^8\ -:((sqrt(2))/5)^(13)