Home
Class 12
MATHS
rArr sin^(-1)x+bar(cos^(-1)x)*x in[-1,1]...

rArr sin^(-1)x+bar(cos^(-1)x)*x in[-1,1]=

Promotional Banner

Similar Questions

Explore conceptually related problems

int (sin^(-1) x -cos^(-1)x)/(sin^(-1) x + cos^(-1)x) dx =

int (sin^(-1)x - cos^(-1)x)/(sin^(-1)x + cos^(-1)x)dx =

The value of x satisfying the equation (sin^(-1)x)^(3)-(cos^(-1)x)^(3)+(sin^(-1)x)(cos^(-1)x)(sin^(-1)x-cos^(-1)x)=(pi^(3))/(16) is :

int (sin ^ (- 1) x-cos ^ (- 1) x) / (sin ^ (- 1) x + cos ^ (- 1) x) dx =

If y=(sin^(-1)x-cos^(-1)x)/(sin^(-1)x+cos^(-1)x)," then "(dy)/(dx)=

Let t_(1)= (sin^(-1)x)^(sin^(-1)x),t_(2)= (sin^(-1) x)^(cos^(-1)x),t_(3) = (cos^(-1)x)^(sin^(-1)x),t_(4) = (cos^(-1)x)^(cos^(-1)x) , Match the follwing items of Column I with Column II

lim_(x rarr1)(a sin(x-1)+b cos(x-1)+4)/(x^(2)-1)=-2, then |a+b|

The value of lim_(x rarr0)(sin^(-1)(2x)-tan^(-1)x)/(sin x) is equal to: