sqrt(i)=

Promotional Banner

Similar Questions

Explore conceptually related problems

The modulus of sqrt(2i)-sqrt(-2i) is

The modulus of sqrt(2i)-sqrt(-2i) is

The value of ((1+sqrt(3i))/(1-sqrt(3i)))^(64)+((1-sqrt(3i))/(1+sqrt(3i)))^(64) is -

If z=pi/4(1+i)^4((1-sqrt(pi)i)/(sqrt(pi)+i)+(sqrt(pi)-i)/(1+sqrt(pi)i)),then"((|z|)/(a m p(z))) equal

If z=pi/4(1+i)^4((1-sqrt(pi)i)/(sqrt(pi)+i)+(sqrt(pi)-i)/(1+sqrt(pi)i)),then"((|z|)/(a m p(z))) equal

If z=pi/4(1+i)^4((1-sqrt(pi)i)/(sqrt(pi)+i)+(sqrt(pi)-i)/(1+sqrt(pi)i)),then"((|z|)/(a m p(z))) equal

((sqrt(3)+i sqrt(5))(sqrt(3)-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2))

( (sqrt(2)+i sqrt(3))+(sqrt(2)-i sqrt(3)) )/( (sqrt(3)+i sqrt(2))+(sqrt(3)-i sqrt(2)) )

If i=sqrt(-1) then ((i+sqrt(3))/(-i+sqrt(3)))^(52722)+((i-sqrt(3))/(i+sqrt(3)))^(43006)=

Prove that [(i+sqrt(3))/(-i+sqrt(3))]^(100)+[(i-sqrt(3))/(i+sqrt(3))]^(100)=-1