Home
Class 11
MATHS
Prove that: cos18^0-s in 18^0=sqrt(2)sin...

Prove that: `cos18^0-s in 18^0=sqrt(2)sin27^0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cos18^0-sin 18^0=sqrt(2)sin27^0

Prove that: cos18^0-sin 18^0=sqrt(2)sin27^0

Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

Prove that: cos18^(@)-sin18^(0)=sqrt(2)sin27^(0)

Prove that: cos18^(@)-sin18^(0)=sqrt(2)sin27^(0)

Prove that: cos 18^0 - sin 18^0 = sqrt(2) sin 27^0

Prove that: cos 18^0 - sin 18^0 = sqrt(2) sin 27^0

Prove that cos18^(@)-sin18^(@)=sqrt(2)sin27^(@) .

Prove that, cos18^(@)-sin18^(@)=sqrt(2)sin27^(@)