Home
Class 9
MATHS
Prove that : 1/(3-sqrt8) - 1/(sqrt8-sqrt...

Prove that : `1/(3-sqrt8) - 1/(sqrt8-sqrt7)+1/sqrt7-sqrt6)-1/(sqrt6-sqrt5)+1/(sqrt5-2) = 5`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: 1/((3-sqrt8))-1/((sqrt8-sqrt7))+1/((sqrt7-sqrt6))-1/((sqrt6-sqrt5))+1/((sqrt5-2))=5

Show that: 1/(3-sqrt(8))-1/(sqrt(8)-sqrt(7))+1/(sqrt(7)-sqrt(6))-1/(sqrt(6)-sqrt(5))+1/(sqrt(5)-2)=5

Prove that: 1/(3-sqrt(8))-1/(sqrt(8)-\ sqrt(7))+1/(sqrt(7)-\ sqrt(6))-1/(sqrt(6)-\ sqrt(5))+1/(sqrt(5)-2)=5

(1/(3-sqrt(8))-1/(sqrt(8)-sqrt(7)))

The value of [1/(sqrt9-sqrt8)]-[1/(sqrt8-sqrt7)]+[1/(sqrt7-sqrt6)]-[1/(sqrt6-sqrt5)]+[1/(sqrt5-sqrt4)] is A)6 B)5 C)-7 D)-6

Prove that: 1/(1+sqrt2)+1/(sqrt2+sqrt3)+1/(sqrt3+sqrt4)+1/(sqrt4+sqrt5)

Prove that 1/(1+sqrt2) + 1/(sqrt2 +sqrt3) + 1/(sqrt3+sqrt4) + 1/(sqrt4+sqrt5) + 1/(sqrt5+sqrt6) + 1/(sqrt6+sqrt7) + 1/(sqrt7+ sqrt8) + 1/(sqrt8 + sqrt9) = 2

1/(sqrt7+sqrt6-sqrt13)=