Home
Class 12
MATHS
[" :omponent of vector "A=2hat i+3hat j"...

[" :omponent of vector "A=2hat i+3hat j" al "],[" " "hat i+hat j" is "],[qquad [qquad (5)/(sqrt(2))],[squarequad 10sqrt(2)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

The component of vector A= 2hat(i)+3hat(j) along the vector hat(i)+hat(j) is

The component of vector A= 2hat(i)+3hat(j) along the vector hat(i)+hat(j) is

The component of the vector barĀ= (2hat i +3 hat j) along the vector barB = (hat i + hat j) is

the angle between the vectors 2hat i-3hat j+2hat k and hat i+5hat j+5hat k is

The magnitude of the vector product of the vector hat i+ hat j+ hat k with a unit vector along the sum of vectors 2 hat i+4 hat j-\ 5 hat k and lambda hat i+2 hat j+3 hat k is equal to sqrt(2) . Find the value of lambda .

Compute the magnitude of the following vectors: veca= hat i+ hat j+ hat k ; vecb=2 hat i-7 hat j-3 hat k ; vecc=1/(sqrt(3)) hat i+1/(sqrt(3)) hat j-1/(sqrt(3)) hat k

The unit vector which is orthogonal to the vector 5 hat j+2 hat j+6 hat k and is coplanar with vectors 2 hat i+ hat j+ hat ka n d hat i- hat j+ hat k is (2 hat i-6 hat j+ hat k)/(sqrt(41)) b. (2 hat i-3 hat j)/(sqrt(13)) c. (3 hat i- hat k)/(sqrt(10)) d. (4 hat i+3 hat j-3 hat k)/(sqrt(34))

The unit vector which is orthogonal to the vector 3 hat j+2 hat j+6 hat k and is coplanar with vectors 2 hat i+ hat j+ hat ka n d hat i- hat j+ hat k is (2 hat i-6 hat j+ hat k)/(sqrt(41)) b. (2 hat i-3 hat j)/(sqrt(13)) c. (3 hat j- hat k)/(sqrt(10)) d. (4 hat i+3 hat j-3 hat k)/(sqrt(34))

The unit vector which is orthogonal to the vector 3 hat i+2 hat j+6 hat k and is coplanar with vectors 2 hat i+ hat j+ hat ka n d hat i- hat j+ hat k is (2 hat i-6 hat j+ hat k)/(sqrt(41)) b. (2 hat i-3 hat j)/(sqrt(13)) c. (3 hat j- hat k)/(sqrt(10)) d. (4 hat i+3 hat j-3 hat k)/(sqrt(34))

If the scalar projection of vector x hat i- hat j+ hat k on vector 2 hat i- hat j+5 hat k , is 1/(sqrt(30)) ,then find the value of xdot