Home
Class 11
MATHS
" Find "K" if the pair of circles "x^(2)...

" Find "K" if the pair of circles "x^(2)+y^(2)-6x-8y+12=0" and "x^(2)+y^(2)-4x+6y+k=0" are orthogonal."

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of k, if the circles x^(2) + y^(2) + 4x + 8 = 0 and x^(2) + y^(2) - 16y + k = 0 are orthogonal.

The circles x^(2)+y^(2)+6x+6y=0 and x^(2)+y^(2)-12x-12y=0

If the two circle x^(2) + y^(2) - 10 x - 14y + k = 0 and x^(2) + y^(2) - 4x - 6y + 4 = 0 are orthogonal , find k.

If the circles x^(2) + y^(2) - 6x - 8y + 12 = 0 , x^(2) + y^(2) - 4x + 6y + k = 0 cut orthogonally, then k =

The circles x^2+y^2-6x-8y+12=0, x^2+y^2-4x+6y+k=0 , cut orthogonally then k=

The circles x^2+y^2-6x-8y+12=0, x^2+y^2-4x+6y+k=0 , cut orthogonally then k=

The locus of the centre of the circle which cuts the circles x^(2) + y^(2) + 4x - 6y + 9 = 0 " and " x^(2) + y^(2) - 4x + 6y + 4 = 0 orthogonally is

Find the equation of circle passing through the origin and cutting the circles x^(2) + y^(2) -4x + 6y + 10 =0 and x^(2) + y^(2) + 12y + 6 =0 orthogonally.

Find the equation of circle passing through the origin and cutting the circles x^(2) + y^(2) -4x + 6y + 10 =0 and x^(2) + y^(2) + 12y + 6 =0 orthogonally.