Home
Class 12
MATHS
10int(0)^((pi)/(2))sin2x log(tan x)dx=0...

10int_(0)^((pi)/(2))sin2x log(tan x)dx=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_(0)^((pi)/(2))sin2x log tan xdx=0

The value of int_(0)^((pi)/(2))sin2x log(tanx)dx is equal to -

Prove that int_(0)^((pi)/(2)) sin 2x log ( tan x ) dx = 0

int_(0)^((pi)/(2))sin2x log tan xdx is equal to

int_0^(pi/2)sin2x log(tanx)dx

Prove that int_(0)^((pi)/(2)) log ( tan x ) dx = 0

Prove that : int_(0)^(pi//2) (sin x-cos x)/(1+sin x cos x)dx=0 " (ii) Prove that " : int_(0)^(pi//2) sin 2x. log (tan-x) dx=0

Prove that : int_(0)^(pi//2) (sin x-cos x)/(1+sin x cos x)dx=0 " (ii) Prove that " : int_(0)^(pi//2) sin 2x. log (tan-x) dx=0

int_(0)^((pi)/(2))log(tan x)*dx

int_(0)^(pi//2) sin 2x log (tan x) dx is equal to