Home
Class 12
MATHS
The pdf of a curve X is f(x)={{:(k/sqr...

The pdf of a curve X is
`f(x)={{:(k/sqrtx","0ltxlt4),(0","xle0" or "xge4):}`
Then , `P(Xge1)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If the pdf of a curve X is f(x)={{:(3(1-2x^2)","0ltxlt1),(0","xle0" or "xge1):} Then, the cdf of X is equal to

The p.d.f. of a r.v. X is f_(X)(x)={{:((k)/(sqrt(x))","0ltxlt4),(0", otherwise"):} , then P(Xle2) =

The p.d.f. of a r.v. X is f_(X)(x)={{:((k)/(sqrt(x))","0ltxlt4),(0", otherwise"):} , then P(X ge 1) =

The p.d.f. of a r.v. X is f_(X)(x)={{:((k)/(sqrt(x))","0ltxlt4),(0", otherwise"):} , then k =

If the pdf of a curve X is f(x)={{:(x/8,0ltxlt4),(0,"elsewhere"):} Then P(Xlt1) and P(Xge2) are

The p.d.f. of a r.v. X is f(x)={{:(kx","0ltxlt2),(0", otherwise"):} , then k =

The p.d.f. of a r.v. X is f(x)={{:(kx", "0ltxlt2),(0", otherwise"):} , then k =

The p.d.f. of a r.v. X is f_(X)(x)={{:((k)/(sqrt(x))","0ltxlt4),(0", otherwise"):} , then P(2ltXlt3) =

The p.d.f. of a r.v. X is f(x)={{:(kx^(2)(1-x)","0ltxlt1),(0", otherwise"):} , then k =

The p.d.f. of a r.v. X is f_(X)(x)={{:(kx(1-x)","0ltXlt1),(0", otherwise"):} , then k =