Home
Class 12
MATHS
I=int(2x)/((1-x^(2))sqrt(x^(1)-1))dx...

I=int(2x)/((1-x^(2))sqrt(x^(1)-1))dx

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following integrals : (i) int(1)/((x+1)sqrt(2x-3))dx (ii) int(1)/((x+1)sqrt(x^(2)+x-1))dx (iii) int(1)/((x^(2)+3x+3)sqrt(x+1))dx (iv) int(1)/((x^(2)-3x+2)sqrt(x^(2)-2))dx

int (dx)/((1+x)sqrt(1+2x-x^(2)))

int(dx)/((1+x)sqrt(1+x-x^(2)))dx

I=int(1)/((x+1)sqrt(x^(2)-1))dx

Evaluate: (i) int(a^(x))/(sqrt(1-a^(2x)))dx (ii) int(2x)/(sqrt(1-x^(2)-x^(4)))dx

(i) int(tan^(-1))/((1+x^(2)))dx" "(ii) int(1)/(sqrt(1-x^(2)) sin^(-1)x)dx

(i) int(tan^(-1))/((1+x^(2)))dx" "(ii) int(1)/(sqrt(1-x^(2)) sin^(-1)x)dx

If I=int x sqrt((x^(2)+1)/(x^(2)-1))dx ,then "I" equals

int((2x-1))/(sqrt(x^(2)-x-1))dx