Home
Class 11
MATHS
[" Maximum value of "(a cos x+b sin x)=]...

[" Maximum value of "(a cos x+b sin x)=],[" O "sqrt(a^(2)+b^(2))],[" O "-sqrt(a^(2)+b^(2))],[" O "(1)/(2)sqrt(a^(2)+b^(2))],[(1)/(3)sqrt(a^(2)+b^(2))]

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (a+sqrt((a)-b^(2)))/(a-sqrt(a^(2)-b^(2)))+(a-sqrt(a^(2)-b^(2)))/(a+sqrt(a^(2)-b^(2)) is

int(1)/(a^(2)-b^(2)cos^(2)x)dx(a>b)=(1)/(a sqrt(a^(2)-b^(2)))tan^(-1)[(a tan x)/(sqrt(a^(2)-b^(2)))]+c

If a sin x+b cos(x+theta)+b cos(x-theta)=d then the minimum value of |cos theta| is equal to (a) (1)/(2|b|)sqrt(d^(2)-a^(2))( b )(1)/(2|a|)sqrt(d^(2)-a^(2))(c)(1)/(2|d|)sqrt(d^(2)-a^(2))(d) none of these

If : a * cos A-b * sin A=c, "then" : a * sin A +b* cos A= A) sqrt(a^(2)+b^(2)-c^(2)) B) sqrt(a^(2)-b^(2)+c^(2)) C) sqrt(b^(2)+c^(2)-a^(2)) D) sqrt(b^(2)+c^(2)+a^(2))

If a cos x-b sin x=c show that a sin x+b cos x=sqrt(a^(2)+b^(2)+c^(2))

If (sqrt(a + 2b) + sqrt(a - 2b))/(sqrt(a + 2b) - sqrt(a - 2b)) = sqrt3 and a^(2) + b^(2) = 1 , then the find values of a and b. (b) If sqrt((x - sqrt(a^(2) - b^(2)))^(2) + y^(2)) + sqrt((x + sqrt(a^(2) - b^(2)))^(2) + y^(2)) = 2a then prove that (x^(2))/(a^(2)) + (y^(2))/(b^(2)) = 1

The minimum values of sin x + cos x is a) sqrt2 b) -sqrt2 c) (1)/(sqrt2) d) - (1)/(sqrt2)

The value of cos [ tan^-1 {sin (cot^-1 (x))}] is a) sqrt((x^2+1)/(x^2-1)) b) sqrt((1-x^2)/(x^2+2)) c) sqrt((1-x^2)/(1+x^2)) d) sqrt((x^2+1)/(x^2+2))

Show that the maximum and minimum values of sqrt(a^(2)cos^(2)theta + b^(2)sin^(2) theta) + sqrt(a^(2)sin^(2)theta + b^(2)cos^(2)theta) are sqrt(2(a^(2) +b^(2)) and a + b respectively.