Home
Class 14
MATHS
2sqrt(6)-y...

2sqrt(6)-y

Promotional Banner

Similar Questions

Explore conceptually related problems

2x ^ (2) + 2sqrt (6) xy + 3y ^ (2)

The line 2x+sqrt(6)y=2 is a tangent to the curve x^(2)-2y^(2)=4 . The point of contact is :

If the line 2x+sqrt(6)y=2 is a tangent to the hyperbola x^(2)-2y^(2)=4 , then the coordinates of the point of contact are -

If the line 2x+sqrt(6)y=2 touches the hyperbola x^(2)-2y^(2)=4, then the point of contact is

If sqrt(1-x^6)+sqrt(1-y^6)=a^3(x^3-y^3) , prove that : dy/dx = x^2/y^2sqrt((1-y^6)/(1-x^6)) .

If sqrt(1-x^6)+sqrt(1-y^6) = a(x^3-y^3) then prove that (dy)/(dx)= x^2/y^2sqrt((1-y^6)/(1-x^6))

If the line 2x+sqrt(6)y=2 touches the hyperbola x^2-2y^2=4 , then the point of contact is (-2,sqrt(6)) (b) (-5,2sqrt(6)) (1/2,1/(sqrt(6))) (d) (4,-sqrt(6))

If the area of the triangle formed by the lines x=0,y=0,3x+4y-a(a>0) is 1, then a=(A)sqrt(6)(B)2sqrt(6)(C)4sqrt(6)(D)6sqrt(2)