Home
Class 11
MATHS
" (ii) "(b+c-a)/(a),(c+a-b)/(b),(a+b-c)/...

" (ii) "(b+c-a)/(a),(c+a-b)/(b),(a+b-c)/(c)" Are in parallel line "

Promotional Banner

Similar Questions

Explore conceptually related problems

If (a(b+c-a))/(loga) = (b(c+a-b))/(logb) = (c(a+b-c))/(logc) , then prove that b^(c ) . c^(b) = a^(c ).c^(a) = a^(b).b^(a) .

|(b+c,a+b,a),(c+a,b+c,b),(a+b,c+a,c)|=

If (a+b-c)/(a+ b) =(b+c-a)/(b+c) = (c+a-b)/(c+a) and a+b+cne 0, then prove that a = b = c.

If a+b+c= 0 , then ((a+b)/(c ) + (b+c)/(a) + (c+ a)/(b)) ((c )/(a+b) + (b)/(a+c) + (a)/(b+c)) = ?

Prove that the lines (b-c)x+(c-a)y+(a-b)=0, (c-a)x+(a-b)y+(b-c)=0 and (a-b)x+(b-c)y+(c-a)=0 are concurrent.

If a+b+c= 0, then the value of ((a+b)/c + (b+c)/a + (c+a)/b) ((a)/(b+c) + b/(c+a) + c/(a+b)) is :

If a+b+c=0 , then the value of ((a+b)/(c)+(b+c)/(a)+(c+a)/(b)) ((a)/(b+c)+(b)/(c+a)+(c)/(a+b)) is

The expression (a-b)^3+\ (b-c)^3+\ (c-a)^3 can be factorized as (a) (a-b)(b-c)(c-a) (b) 3(a-b)(b-c)(c-a) (c) -3\ (a-b)(b-c)(c-a) (d) (a+b+c)(a^2+b^2+c^2-a b-b c-c a)