Home
Class 11
MATHS
" 18.If "x,y,z" are nonzero real numbers...

" 18.If "x,y,z" are nonzero real numbers,then the inversc of matrix "A=[[x,0,0],[0,y,0],[0,0,z]]" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If x. y, z are non- real number", then the inverse of matrix A = [[x,0,0],[0,y,0],[0,0,z]] is

If x,y,z are nonzero real numbers, then the inverse of matrix A=[{:(x,0,0),(0,y,0),(0,0,z):}] is ………

If x ,\ y ,\ z are non-zero real numbers, then the inverse of the matrix A=[[x,0, 0],[ 0,y,0],[ 0, 0,z]] , is (a) [[x^(-1),0 ,0 ],[0,y^(-1),0],[ 0, 0,z^(-1)]] (b) x y z[[x^(-1),0 ,0],[ 0,y^(-1),0],[ 0, 0,z^(-1)]] (c) 1/(x y z)[[x,0, 0],[ 0,y,0],[ 0, 0,z]] (d) 1/(x y z)[[1, 0, 0],[ 0 ,1, 0],[ 0, 0, 1]]

If x, y, z are non zero real numbers, then find the inverse of matrix A=[[x, 0, 0],[ 0, y, 0],[ 0, 0, z]] .

If x, y, z are non-zero real numbers, then the inverse of matrix A=[(x,0, 0) ,(0,y,0),( 0, 0,z)] is (A) [[x^(-1),0,0],[0,y^(-1),0],[0,0,z^(-1)]] (B) xyz[[x^(-1),0,0],[0,y^(-1),0],[0,0,z^(-1)]] (C) (1)/(xyz)[[x,0,0],[0,y,0],[0,0,z]] (D) (1)/(xyz)[[1,0,0],[0,1,0],[0,0,1]]

If x, y, z are non-zero real numbers, then the inverse of matrix A=[(x,0, 0) ,(0,y,0),( 0, 0,z)] is (A) [[x^(-1),0,0],[0,y^(-1),0],[0,0,z^(-1)]] (B) xyz[[x^(-1),0,0],[0,y^(-1),0],[0,0,z^(-1)]] (C) (1)/(xyz)[[x,0,0],[0,y,0],[0,0,z]]] (D) (1)/(xyz)[[1,0,0],[0,1,0],[0,0,1]]