Home
Class 12
MATHS
x+y=tan^(-1)y:y^(2)y'+y^(2)+1=0...

x+y=tan^(-1)y:y^(2)y'+y^(2)+1=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation: x + y = tan^(-1)y : y^2y' + y^2 + 1 = 0

Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: x+y=tan^(-1)y : y^2y^(prime)+y^2+1=0

Verify that the function x+y = tan^(-1)y satisfies the differential equation y^(2)y' + y^(2) +1=0

Verify that the function x+y = tan^(-1)y satisfies the differential equation y^(2)y' + y^(2) +1=0

If cos^(-1)x+Cos^(-1)y=(pi)/2 and Tan^(-1)x-Tan^(-1)y=0 then x^(2)+xy+y^(2)=

If x+ y = tan^(-1) y and (d^(2)y)/(dx^(2)) =f (y) (dy)/(dx) , then f(y) =

The solution of differential equation (1+y^(2))+((x-2e^(tan^(-1)y))dy)/(dx)=0 is (x-2)=ke^(tan^(-1)y)xe^(tan-1)y=e^(2)tan^(-4)y+kxe^(tan^(-1)y)=tan^(-1)y+kxe^(2tan^(-1)y)=e^(2tan^(-1)y)+k

If tan ^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=a, prove that (dy)/(dx)=(x)/(y)((1-tan a))/((1+tan a))