Home
Class 12
MATHS
int(0)^(sin^(2)x)sin^(-1)(sqrt(t))dt+int...

int_(0)^(sin^(2)x)sin^(-1)(sqrt(t))dt+int_(0)^(cos^(2)x)cos^(-1)(sqrt(t))dt

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(sin^(2)) sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t)dt , is

Evaluate the following integrals using properties of integration : int_(0)^(sin^(2)x) sin^(-1) sqrt(t) dt + int_(0)^(cos^(2)x)sqrt(t) dt

The value of int_0^(sin^2x)sin^(-1)(sqrtt)dt+int_0^(cos^2x)cos^(-1)(sqrtt)dt is

The value of int _0^(sin^2x)sin^(-1)sqrt(t)dt+int _0^(cos^2x)cos^(-1)sqrt(t)dt is

Prove that: y=int_(1/8)^(sin^2x)sin^(-1)sqrt(t)dt+int_(1/8)^(cos^2x)cos^(-1)sqrt(t) dt , where 0lt=xlt=pi/2 , is the equation of a straight line parallel to the x-axis. Find the equation.

Let f(x)=int_0^(sin^2x) sin^-1(sqrt(t))dt+int_0^(cos^2x) cos^-1(sqrt(t))dt , then (A) f(x) is a constant function (B) f(pi/4)=0 (C) f(pi/3)=pi/4 (D) f(pi/4)=pi/4

Let f(x)=int_0^(sin^2x) sin^-1(sqrt(t))dt+int_0^(cos^2x) cos^-1(sqrt(t))dt , then (A) f(x) is a constant function (B) f(pi/4)=0 (C) f(pi/3)=pi/4 (D) f(pi/4)=pi/4

Let f(x)=int_0^(sin^2x) sin^-1(sqrt(t))dt+int_0^(cos^2x) cos^-1(sqrt(t))dt , then (A) f(x) is a constant function (B) f(pi/4)=0 (C) f(pi/3)=pi/4 (D) f(pi/4)=pi/4