Home
Class 12
MATHS
(dy)/(dx)=1+x^(2)+y^(2)+x^(2)y^(2),y(0)=...

(dy)/(dx)=1+x^(2)+y^(2)+x^(2)y^(2),y(0)=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: (y)/(x)(dy)/(dx)+(2(x^(2)+y^(2))-1)/(x^(2)+y^(2)+1)=0

If (dy)/(dx)=(2^(x+y)-2^(x))/(2^(y)),y(0)=1 then y(1) is equal to

Find dy/dx x^(1/2) y^(-1/2) + x^(3/2) y^(-3/2) = 0

For each of the following differential equations verify that the accompanying functions a solution.Differential Function x(dy)/(dx)=yy=axx+y(dy)/(dx)=0y=+-sqrt(a^(2)-x^(2))x(dy)/(dx)y=y^(2)y=(a)/(x+a)x^(3)(d^(2)y)/(dx^(2))=1y=ax+b+(1)/(2x)y=((dy)/(dx))^(2)y=(1)/(4)(x+-a)^(2)

(dy)/(dx)=(y^(2)+y+1)/(x^(2)+x+1)

(dy)/(dx)=(y^(2)-y+1)/(x^(2)-x+1)

If (1+x^(2))(dy)/(dx)=1+y^(2),y(0)=1, then y(2)=

Solve :(d^(2)y)/(dx^(2))=(2x)/((1+x^(2))^(2)); given that x=0,(dy)/(dx)=1 and y=2

If tan^(-1)((y)/(x))-(1)/(2)log_(a)(x^(2)+y^(2))=0, then (dy)/(dx) is