Home
Class 11
MATHS
" 6.If "a,b,c" are in "A*P" ,then "((a-c...

" 6.If "a,b,c" are in "A*P" ,then "((a-c)^(2))/((b^(2)-ac))=

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are in AP,then prove that (a-c)^(2)=4(b^(2)-ac)

If a,b,c are in A.P., show that (a-c)^(2)=4(b^(2)-ac) .

if a,b,c are in AP, prove that (a-c)^(2) = 4( b^(2) -ac)

If a,b,c are in A.P.then prove that: (a-c)^(2)=4(b^(2)-ac)a^(3)+4b^(3)+c^(3)=3b(a^(2)+c^(2))

If a,b,c are in H.P., then (c^(2)(b-a)^(2)+a^(2)(c-b)^(2))/(b^(2)(a-c)^(2)) =

If a, b, c are in A.P., then prove that : (a-c)^2 =4(b^2 -ac) .

If a,b,c are in A.P.,prove that: (a-c)^(2)=4(a-b)(b-c)a^(2)+c^(2)+4ac=2(ab+bc+ca)a^(3)+c^(3)+6abc=8b^(3)

If a,b , c are in AP, then, find the value of (a-c)^2/(b^2-ac)

If a,b,c are in proportion,then a^(2)=bc(b)b^(2)=ac(c)c^(2)=ab(d) None of these