Home
Class 11
MATHS
" 10."(1)/(1.6)+(1)/(6.11)+(1)/(11.16)+(...

" 10."(1)/(1.6)+(1)/(6.11)+(1)/(11.16)+(1)/(16.21)+...+(1)/((5n-4)(5n+1))

Promotional Banner

Similar Questions

Explore conceptually related problems

Sum the following series to n terms: (1)/(1.6)+(1)/(6.11)+(1)/(11.16)+(1)/(16.21)+...+(1)/((5n-4)(5n+1))

Sum the following series to n terms: 1/(1. 6)+1/(6. 11)+1/(11. 16)+1/(16. 21)++1/((5n-4)(5n+1))

Prove that by using the principle of mathematical induction for all n in N : (1)/(2.5)+ (1)/(5.8) + (1)/(8.11)+ ...+(1)/((3n-1)(3n+2))= (n)/(6n+4)

Prove that by using the principle of mathematical induction for all n in N : (1)/(2.5)+ (1)/(5.8) + (1)/(8.11)+ ...+(1)/((3n-1)(3n+2))= (n)/(6n+4)

If S_(n)=(1)/(6.11)+(1)/(11.16)+(1)/(16.21)+ ….. to n terms, then 6S_(n) equals

If S_n = (1)/(6.11) + (1)/(11.16) + (1)/(16.21) + …. to n terms then 6S_n equals

Prove the following by using the principle of mathematical induction for all n in Nvdots(1)/(2.5)+(1)/(5.8)+(1)/(8.11)+...+(1)/((3n-1)(3n+2))=(n)/((6n+4))=(n)/((6n+4))

Prove the following by the principle of mathematical induction: (1)/(2.5)+(1)/(5.8)+(1)/(8.11)++(1)/((3n-1)(3n+2))=(n)/(6n+4)

(1^(4))/(1.3)+(2^(4))/(3.5)+(3^(4))/(5.7)+......+(n^(4)) /((2n-1)(2n+1))=(n(4n^(2)+6n+5))/(48)+(n)/(16(2n+1))