Home
Class 12
MATHS
Let the function f: D(f)rarr[0,(pi)/(2)]...

Let the function `f: D_(f)rarr[0,(pi)/(2)]` be given by `f(x)=cos^(-1)(log_(1/2)((x^(2))/(1+x^(2))))` ,then (where `D_(f)` is domain of `f(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of f(x)=cos^(-1)((log_(5)(x^(2)))/(2)) is

Let f(x) be the function given by f(x)=arc cos ((1-x^(2))/(1+x^(2))).Then

Let a function f:(1, oo)rarr(0, oo) be defined by f(x)=|1-(1)/(x)| . Then f is

If f(x)=sqrt(log_((1)/(2))(x^(2)-2x+2)), then domain of f(x) is

The domain of the function f(x)=cos^(-1)[log_(2)(x/2)] is

Find the domain of definition of the function f(x) given by f(x)=(1)/(log_(10)(1-x))+sqrt(x+2)

Let f:R rarr [0, (pi)/(2)) be a function defined by f(x)=tan^(-1)(x^(2)+x+a) . If f is onto, then a is equal to

Find the domain of the function : f(x)=sin^(-1)(log_(2)x)

If (f(x))^(2)xxf((1-x)/(1+x))=64x AAx in D_(f), then The domain of f(x) is