Home
Class 12
MATHS
Function f : R->R ; f(x)=(e^(x^2)-e^(-x^...

Function `f : R->R ; f(x)=(e^(x^2)-e^(-x^2))/(e^(x^2)+e^(-x^2))` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

Function f:R rarr R;f(x)=(e^(x^(2))-e^(-x^(2)))/(e^(x^(2))+e^(-x^(2))) is :

Function defined by f(x) =(e^(x^(2))-e^(-x^(2)))/(e^(x^(2))+e^(-x^(2))) is injective in [alpha -2 ,oo) the least value of alpha is

If f:[0,oo[rarr R is the function defined by f(x)=(e^(z^(2))-e^(-x^(2)))/(e^(x^(2))-e^(-x^(2))), then check whether f(x) is injective or not.

The function f:R rarr R defined by f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)) is

f:R to R is defined by f(x)= =(e^(x^(2))-e^(-x^(2)))/(e^(x^(2))+e^(-x^(2))) , is

Let f:R rarr R defined by f(x)=(e^(x^(2))-e^(-x^(2)))/(e^(x^(2))+e^(-x^(2))), then f(x) is

Let f:R rarr R be a function defined by,f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)) then

Let f:R rarr R be a function defined by f(x)=(e^(|)xl-e^(-x))/(e^(x)+e^(-x)) then- ) fis a bijection (2) fis an injection only (3) fis a surjection (4) fis neither injection nor a surjection f(x) elx

The inverse of the function f(x)=(e^(x)-2e^(-x))/(e^(x)+2e^(-x))+1 is