Home
Class 11
MATHS
" If "f:R rarr R" satisfying "f(0)=1,f(1...

`" If "f:R rarr R" satisfying "f(0)=1,f(1)=2" and "f(x+2)=2f(x)+f(x+1)" then "f(6)" is "`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f:R rarr R is defined by f(x)=x/(x^2+1) find f(f(2))

If f:R rarr R defined by f(x)=(x-1)/(2) , find (f o f)(x)

" A function "f:R rarr R" satisfies the equation "f(x)f(y)-f(xy)=x+y" and "f(y)>0" ,then "f(x)f^(-1)(x)=

If f:R rarr R satisfying f(x-f(y))=f(f(y))+xf(y)+f(x)-1, for all x,y in R , then (-f(10))/7 is ……… .

If f:R rarr R is continous function satisying f(0) =1 and f(2x) -f(x) =x, AAx in R , then lim_(nrarroo) (f(x)-f((x)/(2^(n)))) is equal to

A function f:R rarr R^(+) satisfies f(x+y)=f(x)f(y)AA x in R If f'(0)=2 then f'(x)=

A function f:R rarr R satisfies the condition x^(2)f(x)+f(1-x)=2x-x^(4). Then f(x) is

If f:R rarr R defined by f(x)=x^(2)-6x-14 then f^(-1)(2)=

Suppose f:R rarr R is a function f(1)=2,f(2)=6 and f(x+y)=f(x)+kxy-2y^(2) for all x,y in R then

f:R rarr R;f(x) is continuous function satisfying f(x)+f(x^(2))=2AA x in R, then f(x) is