Home
Class 12
MATHS
lim(x->1)({x})^(1/(Inx)), where {.} deno...

`lim_(x->1)({x})^(1/(Inx))`, where {.} denotes the fractional part function

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr1)({x})^((1)/(n pi x)) ,where {.} denotes the fractional part function

Consider the function f(x)=(cos^(-1)(1-{x}))/(sqrt(2){x}); where {.} denotes the fractional part function,then

If I_(1)=lim_(x rarr0^(+))(sin{x})/({x}) and I_(2)=lim_(x rarr0^(+))(sin{x})/({x}), where {.} denotes the fractional function,then

The value of lim_(xto0)((tan({x}-1))sin{x})/({x}({x}-1) is where {x} denotes the fractional part function

Evaluate int _(-1) ^(15) Sgn ({x})dx, (where {**} denotes the fractional part function)

lim_(x rarr1)(x sin{x})/(x-1)," where "{x}" denotes the fractional part of "x," is equal to "

If f(x) = e^(x) , then lim_(xto0) (f(x))^((1)/({f(x)})) (where { } denotes the fractional part of x) is equal to -

Range of the function f (x) =cot ^(-1){-x}+ sin ^(-1){x} + cos ^(-1) {x}, where {.} denotes fractional part function:

lim_(x rarr0){(1+x)^((2)/(x))}( where {x} denotes the fractional part of x ) is equal to.

lim_(x rarr oo){(e^(x)+pi^(x))^((1)/(x))}= where {.} denotes the fractional part of x is equal to