Home
Class 12
MATHS
If y=x^(3)-c and y=x^(2)+ax+b touch each...

If `y=x^(3)-c` and `y=x^(2)+ax+b` touch each other at the point `(1,2)`, then `(|a|+|b|+|c|)/(|a+b-c|)=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let parabolas y=x(c-x) and y=x^(2)+ax+b touch each other at the point (1,0) then b-c=

Let the parabolas y=x(c-x)and y=x^(2)+ax+b touch each other at the point (1,0), then-

If the parabolas y=x^(2)+ax+b and y=x(c-x) touch each other at the point (1,0), then a+b+c=

Let the parabolas y=x(c-x) and y=x^(2)+ax+b touch each other at the point (1,0). Then a+b+c=0a+b=2b-c=1(d)a+c=-2

Find the value of a,b,c such that curves y=x^(2)+ax+bandy=cx-x^(2) will touch each other at the point (1,0)

Let the parabolas y= x^(2)+ ax +b and y =x(c-x) touch cach other at point (1,0). Then

If the line y=4x-5 touches the curve y^(2)=ax^(3)+b at the point (2,3) , then : (a, b)-=

If the line y=4x -5 touches the curve y^(2) =ax^(3) +b at the point (2,3) then a+b is

If the parabola y=x^(2)+bx+c , touches the straight line x=y at the point (1,1) then the value of b+c is

If graphs of y=ax-b&y=x^(2)+(3a-1)x+a^(2) touch each other,where a,b in R, then a+b is equal to-