Home
Class 12
MATHS
intx/(4+x^4)\ dx is equal to 1/4tan^(-1)...

`intx/(4+x^4)\ dx` is equal to `1/4tan^(-1)x^2` (b) `1/4tan^(-1)((x^2)/2)` (c) `1/2tan^(-1)((x^2)/2)` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

int(x)/(4+x^(4))dx is equal to (1)/(4)tan^(-1)x^(2)(b)(1)/(4)tan^(-1)((x^(2))/(2))(c)(1)/(2)tan^(-1)((x^(2))/(2))(d) none of these

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

tan^(-1)((1)/(1+2x))+tan^(-1)((1)/(1+4x))=tan^(-1)((2)/(x^) (2)))

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

int(dx)/(x^(2)+2x+2) equals (A) x tan^(-1)(x+1)+C (B) tan^(-1)(x+1)+C

The value of 2tan^(-1)(cos ec tan^(-1)x-tan cot^(-1)x) is equal to (a)cot ^(-1)x( b ) (cot^(-1)1)/(x) (c)tan ^(-1)x (d) none of these

(tan^(-1)(x-1))/(x-2)+(tan^(-1)(x+1))/(x+2)=(pi)/(4). find

Solve tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4)

Solve : tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4

tan ^ (-1) (x + (2) / (x))-tan ^ (-1) ((4) / (x)) = tan ^ (-1) (x- (2) / (x))