Home
Class 12
MATHS
If a matrix A satisfies A^(2)-4A+3I=0 an...

If a matrix `A` satisfies `A^(2)-4A+3I=0` and if `A^(8)=pA+qI` ,then `((p)/(80)-40)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If a matrix A satisfies A^(2)-4A+3I=0 and if A^(8)=pA+ql , then ((p)/(80)-40) equals

If a matrix A satisfies A^(2)-4A+3I=0 and if A^(8)=pA+ql ,then (p)/(80)-40 equals

Suppose a matrix A satisfies A^(2)-5A+7I=0 . If A^(8)=aA+bI , find a-b.

A square non-singular matrix A satisfies A^2-A+2I=0," then "A^(-1) =

If A is a square matrix satisfying the equation A^(2)-4A-5I=0 , then A^(-1)=

If a matrix A is such that 4A^(3)+2A^(2)+7A+I=0 , then A^(-1) equals

If a matrix A is such that 3A^(3)+2A^(2)+5A+I=0, then A^(-1) is equal to

A square matrix P satisfies P^(2)=I-P where I is identity matrix. If P^(n)=5I-8P , then n is

If A is a square matrix and |A|!=0 and A^(2)-7A+I=0 ,then A^(-1) is equal to (I is identity matrix)