Home
Class 11
MATHS
"In triangle ABC " "c(sin^(2)A+sin^(2...

`"In triangle ABC " "c(sin^(2)A+sin^(2)B)=sin C(a sin A+b sin B)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that in a triangle ABC , sin^(2)A - sin^(2)B + sin^(2)C = 2sin A *cos B *sin C .

In triangle ABC, if sin^(2)A+sin^(2)B=sin^(2)C then the triangle is

In a triangle ABC, if sin A sin (B-C)= sin c sin (A-B) , then prove that cotA, cotB, CotC are in AP.

In a triangle ABC, the value of sin A+sin B+sin C is

In triangle ABC,(sin A+sin B+sin C)/(sin A+sin B-sin C) is equal to

In triangle ABC, (b-c)sin A+(c-a) sin B+( a-b) sin C=

In a triangle ABC, if sin A sin(B-C)=sinC sin(A-B) , then prove that cos 2A,cos2B and cos 2C are in AP.

In triangle ABC , prove that b^2sin2C+c^2sin2B=2bcsinA .