Home
Class 12
MATHS
Let x(1) satisfies the equation tan^(-1)...

Let `x_(1)` satisfies the equation `tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/(x))=(pi)/(2)+cot^(-1)(7)` and `x_(2)` be the number of solutions of the equation `sin x=(x^(2))/(200)` ,then

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/(x))=tan^(-1)(-7)

Solve the equation (tan^(-)(x-1))/(x-2)+(tan^(-1)(x+1))/(x+2)=(pi)/(4)

If tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/(x))=tan^(-1)(-7)+pi then x =

Solve for x:tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=(pi)/(4)

If tan^(-1)((1)/(x))+cot^(-1)(x)=-(pi)/(2) then the number of solution (s) of the equation is

A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is

tan^(-1)((2x)/(1-x^2))+cot^(-1)((1-x^2)/(2x))=pi/3

Solve for x : tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

The root of the equation tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36)) is